background image

SPecificationS

Cells managed: 4–12 lithium cells per module

• 

Maximum total voltage: 60VDC

• 

Compatible chemistries: LiFePO4, LiCo (LiPo), LiMn, etc

• 

High, low and shunt voltage thresholds: Configurable, 0–5000mV

• 

Accuracy: Within 0.25% (<10mV)

• 

Operating temperature range: -40˚C to 85˚C

• 

Pack balancing: Timed 30Ω shunts (~120mA, up to 1hr)

• 

Temperature sensing: Dual 100KΩ NTC thermistors (optional)

• 

Cell quiescent current draw: 1.6mA (idle) 2.2mA (when sampling)

• 

CAN power supply: 12V nominal (7-16V range), 20mA

• 

CAN bus specification: 250kbps 29-bit IDs (CAN 2.0B)

• 

Dimensions: 72 x 66 x 10mm (plus plugs)

• 

Weight: 35g

• 

inStaLLation

The module has four 3.2mm (1/8”) mounting holes at the corners  as per the diagram below 
which can be used to securely mount the module. If fastening above metal surfaces, use 

standoffs or an insulating layer in between to ensure that the circuit board does not contact 
the  metal,  which  could  cause  short  circuits.  Modules  should  be  installed  in  a  location 
protected from water and debris – typically, inside sealed battery enclosures is ideal.

BMS12 module dimensions and mounting pattern

It is best to mount the module close to the cells it is monitoring, with flylead lengths of 50cm or 
less recommended to minimise induced EMI noise and the chance of wiring/insulation faults. 
Be careful not to have one module’s cells spanning mid-pack contactors or emergency stop 
buttons, as this can subject the module to damaging high voltages when opened! For similar 

reasons, be sure to unplug all BMS modules before doing any battery pack maintenance.

If cells are distributed in multiple groups around the vehicle, we do not recommend setting 
the BMS up as a fully centralised system (that is, with HV flyleads from every cell coming to a 
group of modules at a single location in the vehicle) because the long HV flyleads are subject 
to greater EMI noise and greater chance of potentially dangerous wiring faults.

Once mounted, connect flywires between the 13-pin plug and the cells as per the diagram 
below. It is best to leave the plug disconnected from the module while wiring up, and verify 

all voltages / cell orders before connecting to the module, in case of wiring mistakes.

If  fewer  than  12  cells  are  to  be  connected,  some  cell  inputs  at  the  positive  end  will  be 

unused. The voltage sampling chip powers itself from the most positive screw terminal, so 
the most positive cell wire connected must be bridged to the most positive screw terminal on 
the BMS module, as shown in the diagram below (right).

ZEVA BMS12 v1.6 (c) 2014

+

Shield

Ground

CAN L

CAN H

12VDC

12VDC

CAN H

CAN L

Ground

Shield

Most positive cell

Most negative cell

ZEVA BMS12 v1.6 (c) 2014

+

Mos

t pos

itive cell

Mos

t negative cell

typical wiring for BMS module

example wiring with fewer cells

The CAN plugs are Molex C-Grid SL type. They are designed for fairly small gauge wire, 

around  22-30AWG. The  wire’s  insulation  needs  to  be  small  enough  to  fit  into  the  plug 

housing, which limits outer diameter to about 2mm. The best way to connect wires to pins is 

crimping first then adding a little solder to the joint. A suitable crimping tool is available from 
vendors such as Altronics (part T1537).

If  you  don’t  have  a  suitable  crimping  tool,  you  can  the  solder  wire  directly  to  the  plug, 

ensuring  minimal  gap  between  the  insulation  and  the  back  of  the  pin. You  may  need  to 

compress the wings on the pin insert a little for them to fit comfortably into the housing.

When the pin is fully inserted, a barb on the pin should engage a slot in the housing to lock 
it in place, and a faint click should be heard. Either inspect visually or give a gentle tug on 
the wire after insertion to ensure it is secure. Pins can be removed if necessary by applying 
pressure on the pin’s barb with a jeweler’s screwdriver, then the pin can be pulled from the 
housing.

Be very careful to avoid short circuits or reverse polarities when attaching flyleads for the 

module, as lithium batteries can discharge dangerous current levels and wiring faults can 
damage the BMS12 module.

3

2

CAN BUS

ZEVA BMS12 v1.6 (c) 2014

CAN BUS

TEMP1

TEMP2

+

66mm

72mm

54.6mm

60mm

66mm

Summary of Contents for BMS12

Page 1: ...thresholds are fully configurable allowing the module to be compatible with most lithium chemistries including LiFePO4 LiCo LiPo and LiMn Battery Management Systems should be considered the last line of defence for your battery pack During normal operation the BMS should never have to intervene with vehicle operation only taking action to protect the battery in exceptional circumstances Although a...

Page 2: ...13 pin plug and the cells as per the diagram below It is best to leave the plug disconnected from the module while wiring up and verify all voltages cell orders before connecting to the module in case of wiring mistakes If fewer than 12 cells are to be connected some cell inputs at the positive end will be unused The voltage sampling chip powers itself from the most positive screw terminal so the ...

Page 3: ...spikes Operation Powering up The BMS12 modules run most of their circuitry from CAN bus power When the module powers up the onboard LED should light up green The LED may display a variety of codes as follows Green BMS active no errors Blinking green No CAN bus communications detected or Idle mode Blinking red No cells detected Flashing green orange One or more shunt balancers active Red One or mor...

Page 4: ...hem all together in parallel However the shunts will get an unbalanced pack incrementally closer to balanced each charge and once balanced are able to maintain balance with minimal shunting CAN Protocol Details For those wishing to integrate BMS12 modules with their own master control unit we have prepared an application note detailing the required CAN format and packet IDs structures Please downl...

Reviews: