background image

Shielded twisted pair cable is recommended for CAN bus wiring, with two conductor pairs 
– one pair for CAN signals, and one pair for bus power. (During operation, the traction circuit in 
electric vehicles can emit fairly high levels of electromagnetic interference, which can induce 
noise on signal wiring.) This type of wire is a little uncommon, but you can either purchase it 
from us or we can recommend vendors who may carry it in your part of the world.

Note that the cell sampling electronics is galvanically isolated from the CAN bus electronics 
in order to maintain isolation between your traction circuit and vehicle chassis. There should 
also be no external electrical connections between HV wiring and CAN bus wiring. Ensure 
all wiring is secured so it will not become damaged from vibration or abrasion.

For optimum performance, CAN buses should be wired as a single daisy chain of devices 

(without branching), and need to be terminated at both ends of the bus with a 120Ω resistor 

across the CAN H and CAN L lines. Modules and the MCU may be in any order on the 
CAN bus, and the MCU does not have to be an endpoint (it could be in the middle of the 
bus). Usually the CAN bus route requiring the shortest cable lengths is best. The diagram 
below shows an typical topology for an example 24-cell battery pack. 

 
 

ZEVA BMS12 v1.6 (c) 2014

ZEVA BMS12 v1.6 (c) 2014

+

+

B+

120Ω

B–

To MCU

example wiring for a 24-cell battery pack

Each BMS module needs to be assigned a unique ID on the CAN bus. This is done by adjusting 

the small 16-position rotary switch near the top left of the board. Switch markings are in 

hexadecimal, so “A” means ID 10, “B” means ID 11, etc. Your master control unit (such as 
an EVMS) will need to be programmed accordingly with information about module IDs and 

numbers of cells connected.

Note: Be sure to disconnect the BMS module’s cell connector before doing any battery pack 
maintenance, to avoid subjecting the module to any unexpected voltages/spikes.

oPeration

PoWering uP

The BMS12 modules run most of their circuitry from CAN bus power. When the module 
powers up, the onboard LED should light up green. The LED may display a variety of codes 
as follows:

Green

BMS active, no errors

Blinking green

No CAN bus communications detected (or Idle mode)

Blinking red

No cells detected

Flashing green/orange

One or more shunt balancers active

Red

One or more cells over- or under-voltage

The BMS12 modules are unable to take any action if a monitored cell is out of safe voltage 
range, and must communicate with an appropriate BMS master control unit which is able to 
respond to any reported error conditions. Please refer to the user manual for your BMS master 
control unit for advice on integration with BMS12 modules.

Your complete BMS should be “failsafe”, so if any BMS12 modules are not detected by the 

MCU on startup, or if any cells are out of safe voltage range, the vehicle should not be able to 

drive or be charged. It is a good idea to verify the failsafe by temporarily unplugging the cell 

connector or unplug the CAN bus, and verify that this causes the MCU to stop the charger or 
shut down the drive system.

VoLtage threShoLdS

BMS12  modules  will  come  from  the  factory  pre-programmed  with  voltage  thresholds 
according  to  customer  request/requirements  (LiFePO4  by  default),  but  the  thresholds  can 
also be reprogrammed anytime over CAN bus with an appropriate BMS master controller, or 
a ZEVA EVMS Monitor. The following table lists recommended voltage thresholds for Lithium 

Iron Phosphate (LiFePO4), Lithium Cobalt (LiCo) and Lithium Manganese (LiMn) cells.

 

chemistry

nom Voltage Min Voltage Max Voltage charge / Shunt

temp range

LiFePO4

3.2V

2.5V

3.8V

3.65V

-20˚C – 60˚C

LiCo

3.7V

3.0V

4.2V

4.0V

-20˚C – 60˚C

LiMn

3.7V

3.0V

4.2V

4.0V

-20˚C – 40˚C

 
LiCo cells have the highest energy density but also the highest volatility and are often run 
very close to their safety limits. Cell manufacturers typically recommend charging to 4.2V, 
while cells can suffer damage above 4.3V. As such we recommend a slightly lower charge 

voltage until you are confident that your pack is balanced to very close tolerances before 

5

4

Summary of Contents for BMS12

Page 1: ...thresholds are fully configurable allowing the module to be compatible with most lithium chemistries including LiFePO4 LiCo LiPo and LiMn Battery Management Systems should be considered the last line of defence for your battery pack During normal operation the BMS should never have to intervene with vehicle operation only taking action to protect the battery in exceptional circumstances Although a...

Page 2: ...13 pin plug and the cells as per the diagram below It is best to leave the plug disconnected from the module while wiring up and verify all voltages cell orders before connecting to the module in case of wiring mistakes If fewer than 12 cells are to be connected some cell inputs at the positive end will be unused The voltage sampling chip powers itself from the most positive screw terminal so the ...

Page 3: ...spikes Operation Powering up The BMS12 modules run most of their circuitry from CAN bus power When the module powers up the onboard LED should light up green The LED may display a variety of codes as follows Green BMS active no errors Blinking green No CAN bus communications detected or Idle mode Blinking red No cells detected Flashing green orange One or more shunt balancers active Red One or mor...

Page 4: ...hem all together in parallel However the shunts will get an unbalanced pack incrementally closer to balanced each charge and once balanced are able to maintain balance with minimal shunting CAN Protocol Details For those wishing to integrate BMS12 modules with their own master control unit we have prepared an application note detailing the required CAN format and packet IDs structures Please downl...

Reviews: