background image

7

DECLINATION (DEC.)

  

The astronomical equivalent of latitude. Declination describes the 

angle of a celestial object above or below the celestial equator. The 

sky over the Northern hemisphere has a positive declination. The 

sky over the Southern hemisphere has a negative declination. For 

example, Polaris (the North Star) which lies nearly directly over the 

North Pole, has a declination value of 90°.

RIGHT ASCENSION (R.A.)

 

The astronomical equivalent of longitude. Right Ascension measures

the degree of distance of a star to the east of where the ecliptic 

crosses the celestial equator. R.A. is measured in hours, minutes, 

and seconds as opposed to degrees. It is different than the term 

“meridian”, which is used in referring to lines of longitude. Right

Ascension is referred to in “hour circles”. There are 24 hour circles of 

right ascension which run from the north to the south celestial poles.

CELESTIAL EQUATOR

 

The celestial equator is the line of declination which lies directly 

above the Earth’s equator. The celestial equator lies halfway between

the north and south celestial poles and serves as the 0° point in 

measuring declination.

ECLIPTIC

  

The ecliptic is the apparent path of the sun through the sky over 

the course of the year. Since we view the sun from different angles 

throughout the year, it appears to move in relation to other stars. 

The vernal (spring) and autumnal (fall) equinoxes lie at the points 

where the ecliptic intersects the celestial equator. The vernal equinox

is where right ascension is at 0h (hours). The autumnal equinox can 

be found at 12h R.A.

ASTRONOMY 

TERMINOLOGY

ZENITH

  

The zenith is the point in the celestial sphere directly above your 

head. The zenith varies depending upon your location. In general, 

the declination point of your zenith is equal to the latitude at which 

you are standing on Earth.

EPHEMERIS

  

The ephemeris of a planet or the sun or the moon is a table giving 

the coordinates of the object at regular intervals of time. The coordinates

will be listed using declination and right ascension. Other information

such as distance and magnitude may be listed in ephemerides 

(plural of ephemeris).

ALTITUDE

 

The altitude of a celestial object is the angular distance of that object 

above the horizon.The maximum possible altitude is the altitude of 

an object at the zenith, 90°. The altitude of an object on the horizon 

is 0°. Altitude is measured from your point of observation and does 

not directly correlate to points on the celestial sphere.

AZIMUTH

  

Azimuth is the angular distance around the horizon measured eastward

in degrees from the North Horizon Point. Thus, the North Horizon 

Point lies at an azimuth of 0°, while the East Horizon Point lies at 

90°, and the South Horizon Point at 180°. Azimuth is measured 

from the point of observation and does not directly correspond to 

points on the celestial sphere.

ANGULAR DISTANCE

  

Angular distance is the size of the angle through which a telescope 

tube or binocular aiming at one object must be turned in order to 

aim at another object. If you must rotate the equipment from the 

zenith to the horizon, the angular distance between the two points 

would be 90°.

OBJECTIVE 

The objective is the front lens of a telescope. The listed measurement

for objective lenses is the lens diameter. A larger objective allows 

more light to enter a  telescope and provides a brighter image. The 

objective diameter is also sometimes referred to as the aperture of 

a telescope.

FOCAL LENGTH

  

The focal length of a telescope is the distance from the point where 

light enters a telescope (the objective) to the point where the image 

is in focus. In telescopes with the same size objective, a longer focal 

length will provide higher magnification and a smaller field of view.

MAGNIFICATION  

The magnification of a telescope is determined by the relationship 

between the focal length of the telescope and the focal length of the 

eyepiece used. A greater difference in these focal lengths results in 

a greater the magnification of the telescope. Every telescope has 

a maximum useful magnification of about 60 times the diameter of 

the objective in inches. Magnification beyond the maximum useful

magnification will provide dim, low contrast images.

FOCAL RATIO 

The focal ratio of a telescope is a description of the relationship

between the focal length and objective lens size of a telescope.

Visually,  a  smaller  focal  ratio  (also  called  f-stop)  provides  a  wider 

field of view. Photographically, the lower the f-stop, the shorter the 

exposure time needed to capture an object on film.

LIMITING MAGNITUDE

 

The limiting magnitude of a telescope describes the faintest object 

you can see with a telescope. The magnitude of a star describes 

its brightness. The larger the magnitude of an object, the fainter it 

appears to be. The brightest stars have a magnitude of 0 or less.

RESOLVING POWER

 

The resolving power, or Dawes’ Limit, of a telescope is the ability 

to view closely spaced objects through a telescope. The resolving 

power of a telescope is measured in seconds of arc. The smaller the 

resolving power, the better you will be able to separate binary stars 

when viewing through your telescope.

ABERRATION 

Aberrations are degradations in image, which can occur due to optical

system design or improper alignment of optical system components.

The  most  common  types  of  aberration  are  chromatic  aberration, 

spherical aberration, coma, astigmatism, and field curvature.

COLLIMATION

 

Collimation is the alignment of optical components within an optical 

system. Improper collimation will distort an image and may result 

in aberrations present in the image. Most reflector telescopes have 

collimation adjustments which can be made in order to reduce aberrations

and image distortion. Refractor telescopes do not require collimation

nearly as often as reflector telescopes.

TELESCOPE

TERMINOLOGY

Summary of Contents for ZHUN003-1

Page 1: ...45 W 60 W 75 W 30 W 1 0 1 5 E W OWNER S MANUAL PORTABLE 50MM AZ TELESCOPE WITH SMARTPHONE ADAPTER ZHUMELL 50MMx360MM TELESCOPE Model ZHUN003 1...

Page 2: ...joy life s pursuits hobbies and adventures in rich colorful detail the kind of detail that only high performance optics can produce At Zhumell we design our binoculars telescopes and spotting scopes f...

Page 3: ...Finderscope Mounting Bracket Erect Image Diagonal Prism 3X Barlow Lens 0 96 to 1 25 Adapter 20mm 8mm Eyepieces Aluminum Tripod Smartphone Adapter Travel Bag CARING FOR YOUR ZHUMELL TELESCOPE Zhumell...

Page 4: ...p of biodegradable dish soap to one pint of the homemade solution Do not use lotioned or scented tissues as they could damage the optics of your telescope 3 Wipe down the outside of your telescope wit...

Page 5: ...scope alignment is the first step to fine tuning your telescope and viewing celestial objects Follow these steps to properly set up and align your finderscope ADJUSTMENTS Your telescope can be maneuve...

Page 6: ...moon and adjusting to view it is a good way to acquaint yourself with the movements of your telescope Practice using the azimuth and altitude adjustments to bring the moon into the center of your view...

Page 7: ...nts on the celestial sphere ANGULAR DISTANCE Angular distance is the size of the angle through which a telescope tube or binocular aiming at one object must be turned in order to aim at another object...

Page 8: ...ur in a particular installation If this equipment does cause harmful interference to radio or television reception which can be determined by turning the equipment off and on the user is encouraged to...

Reviews: