1
HIP4086 3-phase BLDC Motor Drive Demonstration
Board, User’s Guide
Introduction
The HIP4086DEMO1Z is a general purpose 3-phase BLDC
motor drive with a microprocessor based controller. Hall effect
shaft position sensors are used to control the switching
sequence of the three 1/2 bridge outputs. The bridge voltage
can vary between 12V and 60V and the maximum summed
bridge current is 20A (with sufficient air flow). This motor drive
can be used as a design reference for multiple applications
including e-bikes, battery powered tools, electric power
steering, wheel chairs, or any other application, where a BLDC
motor is utilized. Because this demonstration board is
primarily intended to highlight the application of the HIP4086
3-phase MOSFET driver with no specific application targeted,
the control features are limited to simple functions, such as
start/stop, reverse rotation, and braking. Open loop speed
control is implemented. More advanced control features, such
as torque control, speed regulation and regenerative braking
are not implemented because these methods require close
integration with the characteristics of the load dynamics.
Important Note
Because Hall sensor switching logic sequences for BLDC
motors are not all the same, this demo board supports most, if
not all, variations of sequence logic. Please refer to the
sequence charts in “Selecting the Correct Switching
Sequence” on page 9 to verify that your desired sequence is
implemented. If you require a different sequence for your
specific motor application or if you need help identifying the
correct switching sequence for your specific motor, please
contact Intersil prior to ordering this demo board for possible
support for a new switching sequence.
Scope
This application note covers the design details of the
HIP4086DEMO1Z with a focus on the design implementation
of the HIP4086 driver using recommended support circuits.
Also covered, is the design method of the bipolar current
sensing feature. Presently, current sensing on this demo board
is used only for pulse-by-pulse current limiting. However, an
analog signal proportional to the motor current is available on
board as a design reference.
The microcontroller firmware is also provided as a reference
but the only support offered by Intersil will be for bug
corrections and for adding more switching sequences. Please
refer to Microchip for details on the use of the PIC18F2431.
Physical Layout
The HIP4086DEMO1Z board is 102mm by 81mm. The tallest
component is a 470µF capacitor. The total height is 24mm
with standoffs or 18.5mm without standoffs. The Hall effect
shaft position sensor inputs are miniature terminal blocks and
the high current outputs are larger terminal blocks that are
rated for 20A.
Four push-buttons are used for reset, brake, reverse, and
start/stop functions. An on-board potentiometer is used to
adjust the duty cycle of the applied motor voltage or an
optional external potentiometer can be connected to a signal
terminal block located adjacent to the Hall terminal blocks.
The switching sequence selection dip switch is used for various
purposes but the most important function is to select the
desired switching sequence. Please refer to the “Setup and
Operating Instructions” on page 3 for more information.
For those customers who would like to modify the firmware of
the PIC18F2431 microcontroller, an RJ25 connector is
provided for easy connection with Microchip firmware
development tools (not provided or supported by Intersil).
Specifications
Motor topology
3-phase BLDC motor with Hall
sensors
Operating voltage range
15VDC to 60VDC
Maximum bridge current
20A (with sufficient air flow)
Hall sensor bias voltage
5V
PWM switching frequency
20kHz
FIGURE 1. HIP4086DEMO1Z INPUTS AND OUTPUTS
March 14, 2013
AN1829.0
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774
|
Copyright Intersil Americas LLC 2013. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
Application Note 1829
Author: Richard Garcia