Pol(
x
,
y
)
|
x
|, |
y
|
≦
9.999999999 × 10
99
√
x
2
+
y
2
≦
9.999999999 × 10
99
Rec(
r
,
θ
)
0
≦
r
≦
9.999999999 × 10
99
θ
: Same as sin
x
°’ ”
a
°
b
’
c
”: |
a
|,
b
,
c
< 1 × 10
100
; 0
≦
b
,
c
The display seconds value is subject to an error
of ±1 at the second decimal place.
°’ ”
←
|
x
| < 1 × 10
100
Decimal ↔ Sexagesimal Conversions
0°0’0”
≦
|
x
|
≦
9999999°59’59”
x
y
x
> 0: -1 × 10
100
<
y
log
x
< 100
x
= 0:
y
> 0
x
< 0:
y
=
n
,
m
2
n
+ 1
(
m
,
n
are integers)
However: -1 × 10
100
<
y
log |
x
| < 100
x
√
y
y
> 0:
x
≠ 0, -1 × 10
100
< 1/
x
log
y
< 100
y
= 0:
x
> 0
y
< 0:
x
= 2
n
+1,
2
n
+ 1
m
(
m
≠ 0;
m
,
n
are integers)
However: -1 × 10
100
< 1/
x
log |
y
| < 100
a
b
/
c
Total of integer, numerator, and denominator
must be 10 digits or less (including separator
symbol).
RanInt#(
a
,
b
)
a
<
b
; |
a
|, |
b
| < 1 × 10
10
;
b
-
a
< 1 × 10
10
GCD(
a
,
b
)
|
a
|, |
b
| < 1 × 10
10
(
a
,
b
are integers)
LCM(
a
,
b
)
0
≦
a
,
b
< 1 × 10
10
(
a
,
b
are integers)
• Precision is basically the same as that described under "Calculation
Range and Precision", above.
•
x
y
,
x
√
y
,
3
√ ,
x
!,
n
P
r
,
n
C
r
type functions require consecutive internal
calculation, which can cause accumulation of errors that occur with each
calculation.
• Error is cumulative and tends to be large in the vicinity of a function's
singular point and inflection point.
• The range for calculation results that can be displayed in
π
form when
using Natural Display is |
x
| < 10
6
. Note, however, that internal calculation
60