background image

 

ACCES I/O Products, Inc. 

MADE IN THE USA 

PCIe-ADIO16-16F Family Manual 

 

10 

Rev B3d 

COM:  If COM is set then each conversion will be the measurement between the IN+ pin and COMMON (single-ended or pseudo-differential mode).  If COM is clear then 

differential mode is set, and each conversion will be the measurement between the IN+ and IN- pins. 

Gain2:0: If BASIC or non-sequenced mode is configured via the SEQ1:0 bits then Gain2:0 selects the gain to be used for the conversion(s) commanded.  If advanced sequence 

mode is configured then these bits are ignored (bits 2:0 at +18 take precedence in advanced sequencer mode) 

/MUX:  All users should set this bit to “1” unless otherwise instructed by the factory.  If MUX is clear (0) then the conversion will be from the auxiliary mux inputs (in non-

sequencer mode) or the sequence will include the aux input (sequencer modes).  Not recommended. 

SEQ1:0:  Use “00” for non-sequenced mode and “10” for advanced sequencer mode.  “11” sets basic sequencer mode, and “01” updates the basic sequence-in-progress.  Not 

recommended. 

/TEMP:  If TEMP is clear (0) then the conversion will be from the onboard temperature reference (in non-sequencer mode) or the sequence will include the temperature input 

(sequencer modes). Not recommended. Most users should set this bit to 1. 

CMS: 

Must be set if conversion will occur slower than 1kHz. Must be clear if conversions will occur faster than 900kHz. 

ADC Control #2, 3C of 32-bit Memory BAR[1]Read/Write 32-bits only 

bit  D31 through D19 

D18 

D17 

D16  D15  D14 through D12 

D11 

D10  D9 through D7  D6 

D5 

D4 

D3 

D2 

D1 

D0 

Name  UNUSED 

RSV 

CONFIG 

RSV  RSV  IN

x

2:0 

COM  RSV  Gain2:0 

/MUX  SEQ1  SEQ0  /TEMP  RSV  CMS  RSV 

Controls ADAS #1, channels 8-15.  Refer to +38, ADC Control #1, for details.   

 

IRQ Enable/Clear and Status, 40 of 64-bit Memory BAR[2+3] Read/Write 32-bits only 

bit  D31   D30 … D25  D24  D23  D22  D21  D20  D19  D18 

D17 

D16 

D15 … D9  D8 

D7 

D6 

D5 

D4 

D3 

D2 

D1 

D0 

Name  WDG  UNUSED 

EXT1  EXT0  LDAC  FOF  FAF  DTO  DDONE  ADCSTART  ADCTRIG  UNUSED  enEXT1  enEXT0  enLDAC  enFOF  enFAF  enDTO  enDDONE 

enADCSTART 

enADCTRIG 

Read IRQ Status to determine which/if any IRQs have fired (D23…D16), if the Watchdog has Barked (D31), and which IRQs are enabled (D7…D0): 

WDG:  

If WDG is SET then the Watchdog Timer has Barked (timed out).  Refer to Watchdog Control (+4C) for details on using the Watchdog Timer feature. 

EXT

n

:  

If EXT

n

 is SET then an IRQ has been fired from the DIO

n

 Secondary Function “External IRQ

n

”.  Refer to DIO Control (+48) for details on DIO Secondary Functions. 

LDAC: 

If LDAC is SET then an IRQ has been fired from the DIO 1 Secondary Function “LDAC”.  Refer to DIO Control (+48) for details on DIO Secondary Functions. 

FOF: 

If FOF is SET then an IRQ has been fired because the ADC FIFO has Overrun: More data was acquired than fit in the ADC FIFO. 

FAF:  

If FAF is SET then an IRQ has been fired because the ADC FIFO Count (+28) has reached the configured FIFO Almost Full IRQ Threshold (+20). 

DTO: 

If DTO is SET then a DMA Timeout IRQ has been fired. 

DDONE: 

If DDONE is SET then a DMA Done IRQ has been fired. 

ADCSTART:  If ADCSTART is SET then an IRQ has been fired from the DIO 0 Secondary Function “ADCSTART”.  Refer to DIO Control (+48) for details on DIO Secondary Functions. 
ADCTRIG: 

If ADCTRIG is SET then an IRQ has been fired from the DIO 0 Secondary Function “ADCTRIG”. Refer to DIO Control (+48) for details on DIO Secondary Functions. 

 

Bits D8 through D0 indicate if the corresponding IRQ has been enabled.   

Write IRQ Status bits SET to clear the latched IRQ Status bit(s).  Typically, code will read +40 and write the value to +40 to clear all detected IRQs and leave the IRQ enables unchanged. 
Write IRQ Enable bits SET to enable corresponding IRQ sources. 
 

DIO Data, 44 of 64-bit Memory BAR[2+3] Read/Write 32-bits only 

bit  D31 through D16  D15 

D14 

D13 

D12 

D11 

D10 

D9 

D8 

D7 

D6 

D5 

D4 

D3 

D2 

D1 

D0 

Name  UNUSED 

DIO15  DIO14  DIO13  DIO12  DIO11  DIO10  DIO9 

DIO8 

DIO7 

DIO6 

DIO5 

DIO4 

DIO3 

DIO2 

DIO1 

DIO0 

I/O GROUP   

I/O Group 1 

I/O Group 0 

Summary of Contents for PCIe-ADIO16-16A

Page 1: ...Sio com 10623 Roselle Street 800 326 1649 http accesio com PCIe ADIO16 16F San Diego CA 92121 1506 USA sales accesio com MADE IN THE USA 16 ANALOG INPUT 4 ANALOG OUTPUT 16 DIGITAL I O FOR PCI EXPRESS...

Page 2: ...A D Scan Start mode optimizes inter channel timing High impedance 8 channel input 1 M 32k FIFO plus DMA for efficient robust data streaming 16 Digital I O pins with flexible secondary functions Four 1...

Page 3: ...0 Ch 0 1 35 ADC IN 1 Ch 0 ADAS3022 1 ADC IN 2 Ch 1 3 37 ADC IN 3 Ch 1 ADC IN 4 Ch 2 5 39 ADC IN 5 Ch 2 ADC IN 6 Ch 3 7 41 ADC IN 7 Ch 3 ADC IN 8 Ch 4 9 43 ADC IN 9 Ch 4 ADC IN 10 Ch 5 11 45 ADC IN 11...

Page 4: ...CH0 1 0 Advanced Sequence Acquires Channel 0 using the gain selected via 18 bits 2 0 Conversion starts will automatically cycle through the channels from CH0 through INx2 0 and each channel is acquir...

Page 5: ...ol bit and status 4 W DAC Control DAC LTC2664 Command Register bits 8 W DAC Waveform Divisor DAC Waveform Points second divisor Base Clock DAC Waveform Rate this register C R ADC Base Clock Frequency...

Page 6: ...to their power on reset state see each ADC Register for more details RST BOARD Writing a 1 will reset the entire device to its power on reset state All RST bits are command bits a 1 causes the reset t...

Page 7: ...llion 125MHz but for broadest compatibility software should always read this register during init and always use the read value when calculating what if any divisor to write to the ADC Rate Divisor re...

Page 8: ...19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Name RSV AIN 15 GAIN2 0 RSV AIN 14 GAIN2 0 RSV AIN 13 GAIN2 0 RSV AIN 12 GAIN2 0 RSV AIN 11 GAIN2 0 RSV AIN 10 GAIN2 0 RSV AIN 9 GA...

Page 9: ...rol 38 for important information about the Channel bits re Differential operation Diff SET indicates the paired ADC Counts were sampled in Differential mode Refer to ADC Control 38 for important infor...

Page 10: ...5 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 Name WDG UNUSED EXT1 EXT0 LDAC FOF FAF DTO DDONE ADCSTART ADCTRIG UNUSED enEXT1 enEXT0 enLDAC enFOF enFAF enDTO enDDONE enADCSTART enADCTRIG Read IRQ Status to determin...

Page 11: ...as a configurable active edge rising or falling SET the corresponding edgeXXX bit to select rising edge CLEAR the bit for falling edge IOGx SET each IOGx bit to configure the digital I O bits in the a...

Page 12: ...ave introduced a new source of latency the kernel userland division Application code runs in userland which must transition to the kernel in order to perform any hardware operation This transition add...

Page 13: ...all applicable EM interference and emission standards However as they are intended for use installed on motherboards and inside the chassis of industrial PCs important care in the selection of PC and...

Page 14: ...and invoiced COVERAGE FIRST THREE YEARS Returned unit part will be repaired and or replaced at ACCES option with no charge for labor or parts not excluded by warranty Warranty commences with equipmen...

Reviews: