background image

SERIES IP220 INDUSTRIAL I/O PACK 

1

2

-BIT HIGH-DENSITY ANALOG OUTPUT MODULE

Max. Linearity

Error (%)

Max. Offset

Error (%)

Max. Gain

Error (%)

Max. Total

Error* (%)

+/-0.012

+/-0.4

+/-0.2

+/-0.612

Max. Linearity
Error LSB

Max. Offset
Error LSB

Max. Gain
Error LSB

Max. Total
Error LSB (%)

+/-0.5

+/-0.25

+/-0.25

+/-1.0 (0.025)

and gain is important because the worst case uncalibrated error can
be significant (although the typical uncalibrated errors observed may
be much less). The maximum uncalibrated error is summarized as
follows:

DAC4813AP  0  250C:

Linearity Error is +/- 0.012% maximum (i.e. 1/2 

LSB).

Bipolar Offset Error is +/- 0.4% FSR (i.e. 20V SPAN) maximum.
Gain Error is +/- 0.2% FSR maximum.

Table 3.3 summarizes the maximum uncalibrated error

combining the linearity, offset and gain errors:

Table 3.3: Maximum Overall Uncallbrated Error

This represents the worst case error with all errors summed.
Typically, each error component is much less than its maximum
and all error components do not reinforce each other. Thus,
typical errors are much less than that shown in the table above.

Calibrated Performance

Accurate calibration of the IP220 can be accomplished through
software control by using calibration coefficients to adjust the analog
output voltage. Unique calibration coefficients are stored in the

PROM 

as 1/4 LSB's for each specific channel. Once retrieved, the

channel's unique offset and gain coefficients can be used to correct
the data value sent to the DAC channel to accurately generate the
desired output voltage.

Table 3.4 summarizes the maximum calibrated error combining

the linearity and adjusted offset and gain errors:

Table 3.4: Maximum Overall Calibrated Error

Thus, correcting the value programmed to the DAC Channel

Register using the stored calibration coefficients provides the means

to obtain excellent accuracy.

Data is corrected using a couple of formulas. Equation (1)

expresses the ideal relationship between the value (ideal_count)
written to the 12-bit DAC to achieve a specified voltage within the -10
to +10 Volt output range assuming Bipolar Offset Binary (BOB) data
format (see Section 2 for details).

Ideal_Count = [(Count_Span / Ideal_Volt_Span) *
Desired_Voltage] + Ideal_Zero_Count 

(

1

)

where,

Count_Span 

= 4096 (a 12-bit converter has 212 possible levels)

Ideal_Volt_Span 

= 20 Volts (for the bipolar -10 to +10 Volt range)

Ideal_Zero_Count 

= 2048 (count for an ideal output of 0 Volts)

Equation (1) can be simplified using the above constants, since

the range and DAC are fixed on the IP220. Equation (2) results:

Ideal_Count = [(4096 / 20)* Desired_Voltage] + 2048  ( 2 )

Using equation (2), one can determine the ideal count for any

desired voltage within the range. For example, if it is desired to
output a voltage of +5 Volts, equation (2) retums the result 3072 for

Ideal_Count. If this value is used to program the DAC output
(following conversion to Hex and left-justification), the output value

will ap5 Volts to within the uncalibrated error specified 

in

Table 3.3. This will be acceptable for some applications.

For applications needing better accuracy, 

the software

calibration coefficients should be used to correct the Ideal_Count
into the Corrected_Count required to accurately produce the output
voltage. This is illustrated in equation (3):

Corrected_Count = [(Idea Gain_Correction) *
(Ideal_Count - Ideal_Zero_Count)] + (Ideal_Zero
Offset_Correction)

where,

Ideal_Gain = 1
Gain Correction 

= PROM_Gain_Error / 4 / 4096 =

PROM_Gain_Error / 16384

Offset_Correction 

= PROM_Offset_Error (4)

(3)

Ideal_Count is determined from equation (2) and Ideal_Zero_Count
remains 2048. PROM_Gain_Error and PROM_Offset_Error are

obtained from the PROM on the IP220 on a per channel basis.

Equation (3) can be written as (4) by making the listed substitutions:

Corrected_Count = [(1 + (PROM_Gain_Error / 16384))
(Ideal_Count - 2048)] + (2048 + (PROM_Offset_Error / 4))  ( 4 )

Using equation (4), you can determine the corrected count from

the ideal count. For the previous example, equation (2) returned a

result 3072 for the Ideal_Count to produce an output of +5 Volts.

Assuming that a gain error of +13 and an offset error of -25 are read
from the PROM on the IP220 for the desired channel, substitution
into equation (4) yields:

Corrected_Count = [(1 + (13 / 16384)) (3072 - 2048)) + (2048 +
(-25 / 4)) = 3066.56

If this value (rounded to 3067) is used to program the DAC

output (following conversion to Hex and left-justification), the output
value will ap5 Volts to within the calibrated error specified in
Table 3.4 (+/-1 LSB). Note that the quantization error (up to 0.5
LSB) introduced by rounding to 3067 is not included in the overall
accuracy specification.

Calibration Programming Example

The available bipolar range, centered around 0 Volts is -10 to

+10 Volts. Assume it is necessary to program channel 0 with an
output of -2.5 Volts.

1. Write to the Transparent Mode register @ BASE + 20H with data

of 

FFFFH 

to select the Transparent Mode. In this mode, data

written to the Channel Register will be automatically transferred
from the input latch to the output latch and converted to the
desired output.

2. Read the 

PROM 

to retrieve the channel's unique offset

calibration error data. For channel 0, read byte @ BASE + 41H.
An 8 bit two's compliment number is read (assume 20H). This
corresponds to a PROM_Offset_Error of +32 decimal.

- 9 -

Summary of Contents for IP220 Series

Page 1: ...service in house repair center WE BUY USED EQUIPMENT Sell your excess underutilized and idle used equipment We also offer credit for buy backs and trade ins www artisantg com WeBuyEquipment REMOTE IN...

Page 2: ...put Board USER S MANUAL ACROMAG INCORPORATED 30765 South Wixom Road P O BOX 437 Wixom MI 48393 7037 U S A Tel 248 624 1541 Fax 248 624 9234 Copyright 1994 1996 Acromag Inc Printed in the USA Data and...

Page 3: ...OUTPUTS 1 0 LOGIC POWER INTERFACE 1 0 5 0 SERVICE AND REPAIR 1 0 SERVICEAND REPAIR ASSISTANCE 1 0 PRELIMINARY SERVICE PROCEDURE 1 0 6 0 SPECIFICATIONS 1 1 GENERAL SPECIFICATIONS 1 1 ANALOG OUTPUTS 1 1...

Page 4: ...CK SOFTWARE LIBRARY Acromag provides an Industrial I O Pack Software Library diskette Model IPSW LIB M03 MSDOS format to simplify CAUTION SENSITIVEELECTRONICDEVICES O DNOT MN ORSTOREREMSTRONG ELECTROS...

Page 5: ...upply sourced from the P2 connector The IN OUT configuration of the jumpers for the different supplies is shown in the following table IN means that the pins noted are shorted together with a shorting...

Page 6: ...ctor of the carrier board AMP 173280 3 or equivalent This provides excellent connection integrity and utilizes gold plating in the mating area Threaded metric M2 screws and spacers are supplied with t...

Page 7: ...OC Total Number of ID PROM Bytes 17 55 IP220 16 34 IP220 8 CRC 19 to 3F yy Not Used ADDRESS MAPS Table 3 1 IP220 I O Space Address Memory Ma Notes Table 3 1 1 The IP will not respond to addresses that...

Page 8: ...rred to the output latch and the updated analog output appears at the board s field connector The data of all the channels is simultaneously transferred once per simultaneous trigger from the D A inpu...

Page 9: ...ously and synchronously to produce desired analog outputs This method is useful for applications that require updating all the channels simultaneously and synchronously Each channel is written to with...

Page 10: ...esired_Voltage 2048 2 Using equation 2 one can determine the ideal count for any desired voltage within the range For example if it is desired to output a voltage of 5 Volts equation 2 retums the resu...

Page 11: ...The Transparent Mode allows channels to be updated quickly on an individual basis since data written to the input latch is immediately transfered to the output latch and converted to an updated analo...

Page 12: ...temAccuracy 0 0 2 5 of 20V SPAN Maximumcorrectederror i e calibrated at 25 C See Note 5 withthe outputunloaded SettlingTime8 u S to within 0 012 for a 20V stepchange load of 5KLIin parallelwith 470 pf...

Page 13: ...rial I O Pack IP Each Industrial I O Pack IP has its own unique P2 pin assignments Refer to the IP module manual for correct wiring connections to the termination panel Schematic and Physical Attribut...

Page 14: ...e I I SPACER COMPONENT SIDE OF CARRIERBOARD IPN WE y 6 POPHEAD SCREW ASSEMBLYPROCEDURE THREADEDSPACERSARE PROVIDED IN TWO DEFERENT LENGTHS THESHORTER LENGTH IS FOR USEWOW AWE 3 0 8 8 COPPER SHOWN CHE...

Page 15: ...coocroco 10 NOLOG COMMON 4 V t A VO DUE TO VOLTAGE DROPS ACROSSNNE LEAD 11151510CE Or NNE WOE R Is ococomooto TNATA NON RESISTN4CE LON 1 nm A SNORT I N K RUN BE CONNECTED Al I I I OUTPUT 10 COLIC LIE...

Page 16: ...O r 4 5 0 1 4 6 2 P2 46 45 43 42 44 3 9 3 8 3 7 3 6 3 5 3 4 3 3 37 31 7 9 2 8 2 7 2 6 2 5 24 7 3 7 7 21 2 6 19 6 16 15 12 12 9 8 5 3 7 1 I 0 7 764 5 11 0 7 1 1 45 6 2 1014Nre1 TO M O U N D 5 14110 4 P...

Page 17: ...39 41 4 3 45 4 7 49 0000000000000000000000000 MODELTRANS GP MODULESCHEMATIC 0 1 TOPVIEW FRONTVIEW A 1 2 3 4 8 4 9 5 9 1 2 3 A 8 4 9 5 8 r 2 3 4 0 5 9 1 1 2 3 4 9 5 4 1 A 141644441011 PANEL ACROMAGPAIN...

Page 18: ...service in house repair center WE BUY USED EQUIPMENT Sell your excess underutilized and idle used equipment We also offer credit for buy backs and trade ins www artisantg com WeBuyEquipment REMOTE IN...

Reviews: